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1. Introduction - The study of large scale ocean flows has tradi-

tionally been a subject where perturbation techniques have played a
central role [1]. The reason is that such flows are rich in boundary
layers ([2],[3]),the Gulf Stream being the most striking example. While
a great deal has been leanned with these analytical methods, still un-
resolved and as a consequence of central importance in geophysical fluid
mechanics, is the dynamics of ocean flows. This is especially true for
the medium or meso-~scales.

Thus for example a rather eloquent theory has been developed with
singular perturbation expansions which explains why there 1s a westward
intensification of ocean currents in the Atlantic; that ig, a Gulf Stream
[2]. Undetected by this theory, however, is the so-called meandering of
the Gulf Streem. The latter is a meso-scale phenomena, highly nonlinear,
and time dependent, which is felt to have important consequences on the
global circulation [4].

Another example of a meso-scale flow whose dynamics is not understood
is the mid-ocean eddies. These are felt to be quite important since they
apparently transport a significant amount of energy. Unfortunately they

are essentially nonlinear in character and as a consequence have eluded



exact analysis,

In the last few years there has been increasing interest in using
numerical methods to study meso-scale dynamics [5]., There are of course
many "world ocean" or global circulation models in existence (*), and
while these have made a significant contribution to oceanography they
can not be expected to resolve meso-scale effects on the present genera-
tion of computers. As a consequence, attention is being given to limited
region models. This activity has received a fundamental stimulus from
the M.0.D.E. project (mid-ocean dynamics experiment) [6], and in fact,
these experiments were primarily designed to be a data base for numerical
models.

In this paper we describe one such model based on the finite
element method. The latter can at best be said to be untested as regards
fluid calculations,. although there have been some preliminary studieg ([8],
(9], [10]- [11]). We do not wish to confront in this paper the rather
controversial question of finite elements vs. finite differences in the
context of computational fluid dynamics. Indeed, it may very well turn
out that finite elements will play only a very small role in the latter.

What finite elements does bring to flow problems, on the other hand,

is o systematic procedure for developing stable higher order approximations

(*)See the articles by K. Bryan and M. Cox in [5].




even in the presence of irregular grids and geometries. The latter are
of crucial importance in the limited region model. 1Indeed, one wants the
flexibility in choosing boundaries (to coincide for example with a
streamline in the M.O.D.E. data), and irregular grids are essential since
meso-scale eddies will typically occupy & smell part of the M.0.D.E.
region. Moreover, the inflow and outflow regions change quite substan-
tially in time, and as we shall show in the sequel, finite elements

treat this in a natural and stable manner.

It has been argued [12] that the stability and reliability of the
finite element method comes at the price of efficiency. For & gliven
problem there are always difference schemes with equivalent accuracy but
requiring less work than finite elements. We find this argument rather
convincing for regular grids and geometries, but much less so for the
setting described above. In addition, for problems such as the one
described in this peper where scientific understanding of physical
phenomena is the primary goal, a premium is naturally placed on
reliability.

In this paper we shall discuss only a two dimensional barotropic
model [14], although the calculations with the M.0.D.E. data will be
done with a three dimensional quasi-geostrophic model [13]. The reason.
for this is that the barotropic model can be defined simply and
concisely and yet containsall the significant nonlinearities of the
three dimensional model. In fact, the latter has a stratified vertical

structure, and is in essence & system of barotropic models.



2. The limited region barotropic model. Let { be a region in

the ocean having the boundary ' (see Figure 2.1). In keeping with
standard notation we let y > 0 be the northward direction and x > 0O

be eastward. The physical variables of interest are the x and y

{
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Figure 2.1.- The region .

components u, v of the velocity, the pressure p, and the density p.
Letting f = o + By denote the Coriolis parameter the classical baro-

tropic equations of motion are

R 3 2 =_L13p
(2.1) (at tug-tv ay)u -fv = - S o
9 9 2 e _ L3P
(2.2) (at tug— v ay)v + fu S5y "
| 2 3 ..
(2.3) Yt 3y v = Q,

In the study of meso-scale eddies associated with oceanic flow
the most important physical quantity is the potential vorticity g,

which in our bartropic model is defined as

_
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The first term in the brackets is the classical vorticity, and the second
term represents the contribution from the Earth's rotation.
The equation describing the transport of vorticity is obtained by

taking the curl of the momentum equations (2.1)-(2.2). This gives

R 2 Sy =
(2.5) ( T vl 5y o = 0.

Because the flow is incompressible, there is a stream function § satisfying

(o] = _-a-i =al
(L-6) u ay vV ax -
It follows from (2.4) and (2.6) that the stream function and the potential

vorticity are related through the elliptic equation
(207) Aw=c-fc

We shall use (2.5) and (2.7) as our basic equations of motion.

The region .2 is not the world ocean but rather a smaller subset
determined by the locetion of the M.0.D.E. experiments. As e consequence
I' is not a physical boundary in the usual sense but rather a curve in a
lurger oceanic body. This means that our boundary condition will be
slightly different from the usual ones that occur in fluid dynemics.

In particular, we observe that at each time t > 0 we must solve
(2.7) for the stream function ¥ in terms of the potential vorticity . We
can do this once the flow normal to ' is specified. Indeed, it follows from
(2.6) that the velocity normal to I is precisely the tangential derivative

of the stream function, denoted %%'in the sequel (see Figure 2.2). Hence



the specification
(2.8) q)(?_‘_o t) = wr(ac_o t) for x = (xo y)el,t>0

uniquely determines the velocity normal to I'y, and at the same time allows
us to solve (2.7) for ¥ in terms of C.

The condition (2.8) by itself is not sufficient to uniquely deter-
mine the velocity field. To see this let us note that (2.5) can be

written
' D =
(2.5") = (8) =0,

where Jl-ia the material time derivative

Dt
D _ 2 3 9 .
Dt ot FUS tVay é

i.e., the derivative with respect to time following a fixed particle in
space. The relation (2.5') states that the potential vorticity g is
conserved along particie path; i.e., once a fluid particle enters { its
potential vorticity is fixed and remains the same until it leaves .
This suggests that the right condition on the vorticity 1s to specify its
values on the inflow. The latter is defined as those points on T where
the normal velocity is negative, or what is the same

Y

(2.9) Pt = {x= (x, y) e T | _50_1" (x, t) s 0}.

Our condition is thus




T

(2.10) o(x, t) = gplx, t) forxe I, (), t >0,

a
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i‘n ,—1/

Figure 2.2.- Inflow region.

A more fundamental calculation Justifying the boundary condition

(2.10) starts with

(2.11) |z(, t)lli = fgf lo(x, £)]2 ax ,

which in the geophysical fluid dynamics literature is often called the
potential entrosphy. Mathematically, it is of course nothing more than
the spatial L2 norm of the potential vorticity at each time t > 0. 1In

the sequel we shall retain the notation implied in (2.11) with

I
Hell, =y JJls(®)|® ax
@ |
dencting the L2 norm of g, and more generally

r. +r 1/2
- B_i_f_&_2)
lell, =1 25 112ay)

o
rl+r2§r 9% lay 2 ‘

denoting the Sobolev norm of integral order r 2 0.



To bound the entrosphy we rewrite (2.5) as

(2.12) -§-§= J(z, ),
where
(2.13) J(v, w) = v 3w _ 3v 3w

Multiplying (2.12) by ¢ and integrating over § gives

(p.1k) %3‘8; Mz, t)lli = J;IJ(C, VT

i.e., the time growth of the potential entrosphy is governed by the

.[};(c, V)T .
Q

The key step in this calculation is to simplify this expression by

values of the volume integral

converting it into a boundary integral over I'. We observe that

1l 3 29 1l 9 2 9
I(g, Vg = 5 = (z] %--2-3;[?;] g‘ﬁ'

Hence an integration by parts gives
20 2_}€_a.w.2
(2.15) oS gllc( , t)lloi =-J (55) &° >

which is the concise form of the law governing the time growth of en-

trosphy. There are a couple of interesting features about this law
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that are worthy of note. First the boundary integral can be broken into
two parts, one over the inflow region Fin(t) and the other over the out-
flow:

I‘out(t) =T - rin(t) .

On the latter g% > 0 (see (2.9)); hence the contribution to (2.15) from

the outflow is non-negative, i.e.,

(2.16) gag gllc(', t)||§ {f g f(t) ('g%) <
in

From this we see that the time growth of the potential entrosphy is bounded

by the initial data, which we take as

(2.17) t(x, 0) = ¢ _(x) xe @,
(2.18) v(x, 0) = y_(x) XE 2,

and the boundary data on the inflow. This in essense is the raison d'etre
for (2.10).

The equality (2,16) Is quite centrul Lo the entire problem, and plays
o role similar Lo the coerciveness lnequallty for elllptic equations. In
fact, using the techniques of [16], uniqueness and continuous dependence
on data can be readily developed from (2.16), and in Section 3 we shall
develop a similar inequality for finite elements and use it to prove

stability and convergence.
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3. Finite element approximation. Our approximation to the barotropic

model (2.5), (2.7)-(2.8), (2.10), (2.17)-(2.18) is obtained by the classical
Galerkin (or method of weighted residuals) used in conjunction with finite
elements. The first step is to subdivide Q into triangles (possibly
curvilinear at the boundary), and to consider a finite element space on

this grid.

Figure 3.1.- Discretization of 2.

In practice attention will be restricted to three specific finite
elements, although the theory developed in the next section applies much

more generally. ‘"'he simplest element we shall use is the familier linear

)
piecewise polynomial function. Letting z,, 1 < J < Nh (*)

J

of the triangles, any function vh(g) in the piecewise linear finite ele~

, be the nodes

h
ment space § can be written

Nh
(3.1) He) = 3 vz, ¢,
=1

*

( )In the sequel h > 0 will denote an average mesh spacing, and for
convenience quantities associated with finite elements will be parameter-
ized by h; e.g., the number of nodes is denoted Nb,




that are worthy of note. First the boundary integral can be broken into
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flow:

rout(t) =T - l‘in(t) .

On the latter g%-z 0 (see (2.9)); hence the contribution to (2.15) from

the outflow is non-negative, i.e.,

5 | 2 | f Wy, .2
r. (t)
in
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stability and convergence.



10

3. TFinite element approximation. Our approximation to the barotropic

model (2.5), (2.7)-(2.8), (2.10), (2.17)-(2.18) is obtained by the classical
Galerkin (or method of weighted residuals) used in conjunction with finite
elements. The first step is to subdivide £ into triangles (possibly

curvilinear at the boundary), and to consider a finite element space on

this grid.

Figure 3.1.- Discretization of 2.

In practice attention will be restricted to three specific finite
elements, although the theory developed in the next section applies much
more generally. ‘he simplest element we shall use is the familiar linear

#
piecewise polynomial function. Letting z,, 1 <J < Nh ( ), be the nodes

J
of the triangles, any function vh(z) in the plecewise linear finite ele~
ment gpace Sh can be written

.
(3.1) P(x) = > vh(gj) ¢J(§)
=

*
( )In the sequel h > 0 will denote an average mesh spacing, and for
convenience quantities associated with finite elements will be parameter-

ized by h; e.g., the number of nodes is denoted NB.
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where ¢J are the femiliar hill functions [ 7] satisfying

(3.2) 0,(z) = }g ’

L
L

"

if ]
if J
We shall also use quadratic and cubic elements. TFor these spaces
any function v can be represented by (3.1) except that Z (L<y< Nh)
include not only nodes but also midpoints in the case of quadratics, and
two equally spaced points on the sides of triangles plus the centroid

in the case of cubics (see Figure 3.2).

Figure 3.2.- The points 23'

In each of the above cases we have approximations to the stream

functlon and potentisl vorticity at each time t > O of the form

h Nh h
(3.3) vz, ) = 1 ¥yt 6,(x),
J=1
h Nh h
(3.4) Tz, t) = 3, £y(t) ¢4(x).
=1

We determine the weights wlj‘(t) = wh(_z_J, t) and ;?(t) = Ch(£ , t) by the
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Galerkin method end the initial and boundary conditions. For the latter

we have from (2.8) and (2.10)

(3.5) Vie) = Uz, 8)  forz e, >0,
(3.6) £y(t) = gz, t)  forz e Ty (t), >0,

and for initiel conditions we take

o h _
h

To determine the remaining weights, namely

h h
wj(t) for Eﬂ e 2, ;J(t) for Ej £ £ L}rout(t) »

we rewrite the barotropic equations in the integral form

(3.9) SS %%‘v = §§-I(C, Vv all v € LQ(Q) .
(3.10) SS Wiv = SS (£ - 3g)v all v € az(n) ™),
Q f

The Galerkiﬁ jdea is to use (3.9)-(3.10) except restricted to a finite

* 1
( )In keeping with standard notatian ve let H () be the space
functions v for which [|v|]; <= , and H (R) be the subspace of H

of
o Q)
of functions vanishing on I [1§].
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dimensionel subspace, which in our setting is the finite element space

Sh. As usual we require the test functions v to satisfy the homogeneous

boundary conditions, hence the approximate system is equivalent to

h
(3.11) _!;f%%— ¢J =f J(Ch’ lPh) ¢J all zy € YAV I‘out(t) s

3

(3.12) f whevp, = _U(f-ch)cp allz, € 2 .
3T % 3 3

3

Obsérve that (3.11) is an implicit system of ordinary differential

equations in the weights

() = {cg’(t)} , Yot = _W?(t) }.
which can be written

(3.13) = 2 e, e £

where the "mass matrix" M has the entries
' 9] t
£f¢3 ¢ (E-k € QUT and zy € Urout( ))
and Jh is a vector whose generic entries are

h _h
guc W6, (2, € QUT L (8)).

The elliptic equation (3.12) is equivalent to the matrix equation
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(3.1L) Ky = £ - MgP

where K is the "stiffness matrix"
LJ’ 6, V4, (g € QUT, 2, € ),

and the entries of thc vector f are {{ffcbs (-Z—J € ).

In practice of course it is necessary to solve both the ordinary
differential equation (3.13) and the matrix equation (3.14). The latter
causes very few problems. Once the dependent variebles are removed from
wh (i.e., the ones determined by the boundary conditions (3.5)), the re-
sulting coefficient matrix is positive definite. Hence it can be factored
(by elimination) into LDLT where L is triangular and D is diagonal. Once
this is done (3.14) can be solved for the stream function in terms of the
vorticity at any time t > 0O by simple backsolves.

The time integration of (3.13) is a more delicate matter. First,

this system is stiff -- the eigenvalues of the associated linearized system
h)1/2

vary from 0(1) to O(N . Secondly, the system is implicit. The mass
matrix M is a sparse banded matrix, but it is not diagonal. Moreover,
direct inversion of M to relate the time derivetives of ;P to values of

P

and QP must be rejected since M"l is typically a full matrix.

Iy is perhaps appropriate to digress slightly at thie point end
ment.jon Lhat the most serious criticism of the finite element ideas has
been the rather fundemental role implicitness plays in the latter [12].
Could one not develop difference schemes of comparable accuracy which do

not involve mass matrices like M? This of course is an important and

serious criticism and one which will be dealt with in the final section
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containing numerical results.

The implicitness of (3.13) can be avoided by a very simple process

known as lumping. The key observation is that

[fo o,

9]

unless zJ and zk belong to a common triangle. In the latter cese &i is

h (*)_

equal to L plus terms of order h Thus (3.13) can be replaced by
: J

Nh
: sh _ h ~h

k=1

(with error 0(h)) which in matrix form becomes

D‘h = E(Eh

h

» V)

where D is diagonal. The approximation is then completed by using an
explicit forward time difference for éh after a premultiplication by

p~L,

While this technique 1s quite popular in certain engineering circles
7], 1t 18 not withoul serious difficulties. First, en error of O0(h) is
made in the lumping process; hence it cannot be used efficiently for
higher order elements such ag quadratics end cubics. In addition there

are problems with lumping even for linear elements. For example consider

(*)

For a uniform grid cancellation occurs and &; = t? + 0(h2).
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a one dimensional linearized advection of vorticity

With linear elements and & uniform mesh the analog of (3.13) is

+h

h

J

h

+ Lz j41 ”

+ 85,0076 + U(E ;_y)/2n =0 .

The associated lumped system 1s

*h

h
%5

h =
+ Ulgy, - cj_l)/zh =0,

If one uses an explicit forward time difference this becomes

h

h h
¢y([n+11a) = g3(nat) - (Ut/2n) (g,

(ndt) - gy ) (nat)]

which is a classical unconditionelly unstable difference scheme [1X]!
It would appear therefore that implicitness.is quite fundementel to the
finite element approximetions, and except for certain quite special cir-
cumstances lumping must be rejected for first order hyperbolic equations
like the vorticity transport (3.9).

In order to describe some efficient time discretizations for (3.13)

let us introduce a time step At > 0 and write

(n)

(n) _
CJ = CJ(nAt) s wJ

= wj(nAt) .

The most obvious second order accurate scheme that can be used is the

leap frog method
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(3.15) Mg - L)y pong = g (P), 40y

which perhaps is more conveniently written in variational form as

(n+1) (n=1)
(3.15') _Q [e——i—1¢ = gJ[g(n). o .

Observe that (3.15) is implicit, but the scheme is not unconditionally

stable. 1In fact, the usual (intuitive) stability analysis [15] gives

(3.16) bat

as the Courant condition, where ho is the minimum mesh length and
h h
U = sap {|%¥'| + ]%% l}.
xefl

If the inflow region Fin(t) is independent of time t, then the mass matrix

%
will not depend on time.( ) This means that at the start of the compu-

tation the (necessarily positive definite) mass matrix can be factored
into LDL® and hence (3.15) can be marched in time by simple backsolves.
Unfortunately, in the M,0.D.E. experiments the inflow will vary
with time, often quite drasticelly. This means that the mass matrix will
have to be refactored at each time step. Moreover, the grids typically

will not be uniform and the minimum mesh length ho could be quite small.

»*
( )The coefficients of M are independent of time t but the size of
M is NXN where N = N(t) is the number of nodes z, in .1 and on the out-

J
flow Fout(t).
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In this case the Courant condition (3.16) requires a smaller time
interval At, and hence more time steps. Because of the expense of
the factorization at each time step this would appear to indicate that
(3.15) is not very efficient for such cases. A much more attractive

alternative is the implicit scheme

(n+1) (n-1) (n+1) (n-1)
(3.16) g[‘ S 1¢=£IJ<[L 2 e

whose linearization is unconditionally stable.
As will be shown in the next section, the Galerkin “semi-discrete"

system (3.11)-(3.12) produces approximations to the velocities

to order O(hk-l) if piecewise polynomials of degree k-l are used. Similar
approximations are made to the vorticity. Thus the second order schemes
(3.15)=(3.16) would seem to be appropriate for the linear and quadratic
elements but not for cubice where third order spatial approximations are
obtalned. Ae wlll be reported in the last section, however, we found
(3.19) or (3.16) gquite sultable for cublcs provided time extrapolation is

used.




o
O

4. Stability and convergence. The goal of this section is <o

prove that the semi-discrete finite element system (3.11)-(3.12) is stiable

in the sense that
h h
2L 0, 18P, 0]

are bounded by the initial and boundary data. In addition, the order of

convergence of the approximate vorticity Ch and stream function wh is
estnblished.
The proof of stability centers around a calculation similar to one

which produced (2.15). We start by writing

(b.1) A R A IR -
where
(h.2) ;*;=Z 230, ZM
_Jeri (t) zy er J
Thus, ca vanishes on the inflow Pin(t) and wg vanishes everywhere on

Lhe boundary 1T', Because of the former we can replace ¢J with cﬁ in

(3.11).  This gives

h h
5L
Y] h I
(k.3) SJ tawm "M W
+ SS I(ep, ¥hIEY + Ss 3(ch, vz -

Y] a

The left hand side of (L4.3) can be written
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h d
eyt 1y g Heytes O,

hence after dividing by Ilcg(-, t)]lo, (4.3) becomes a differential
relation describing the time growth of vorticity, We want to bound the
right hand side by known quantities which in this setting are the boundary
data C?, w? and the initial data. The first term on the right hand side

causes no difficulties, and we use the Schwartz inequality to bound it by
h, az;?
Hegles ), g ¢y 0,

Another application of the Schwartz inequality permits us to bound the

second term by
h h h
Hzotes 11 Tleptes )] o T (s 0]y

where

v, o = sup (|9v] + |v])
1,2 J_CE:J}

The upproximate stream function wh and vorticity Ch are related through the

elliptlc vyntem (3.12). Thus standard enilmates, [7], pive
h h h h
o TR < oy IRH + e lIeh 1, + oyl 1221,

where Ci’ i =1,2,3, are constants independent of h > O.
The last expression in (4.3) is the more interesting one. On the

surface it appears to be troublesome since J(Cg, wh) involves first

h

spatial derivatives of CQ'
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It is at this point, however, where the inflow condition (3.6) plays a
central role. In particular, we duplicate the calculation starting with
(2.14) and leading to (2.16) except in this case with functions in the

space Sh. We recall that the term in question is
h _hy, _h
JI (g, ¥g) tg .
9)
An integration by parts shows that this term is equal to
T

But cg vanishes on the inflow and the tangential derivative of the
stream function (i.e., the normal velocity) i8 positive on the outflow if

h 1is sufficiently small. Hence

h hy, .h
fo I(Zg, ¥g) To <0

Combining the above with (4.3) gives

h
(4.5) L 1B, 021, < 6y + Cg Hlggles 0,
where
2%y b h e, 1
. hd C .’T
c, = sup ||§_T_1". s O, + g ’T)Hl,w[clllwl‘( » Oy + c5lizp o
0<T<t,
CB = sup {HC?(H T)||l’oo CQ} *

0<t<t

l
&
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An integration of the differential inequality {4.5) gives
h h Al
(4.6) ”‘nz(" L)HO < exp[CBt]IICR(', o)||O + (CA/CB){exp[CBt] -1}.

This expression with (4.4) consists of our statement of stability.

We now consider the order of accuracy of the finite element approxi-
mations. In particular suppose Sh consists of piecewise polynomials of
degree k-1; thus k=2 for linear elements; k=3 for quadratics and k=4 for

cubics. Let

o]
ct
|

= Ytz )6, ,
3 -J J

»
t
]

be the interpolants of [, Y respectively. Then

“h K-
e = gl <™ [zl ,

k-r

‘|¢h - w‘lr f Ch Ilw||k )

for r=0, 1 where

o +0 1/2
TR B DTN
k o a2 fe) ¢

al+02§k 9x lay
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~

Since Ch is "close to" ¢ it is "almost" a solution of the vorticity

transport equation (3.9). More precisely, for any v € L2(Q )
5 N

SS %y ﬁJ(Ch, V)v
ot O

-}onﬁ‘) S, + o el Uil

~

B

v)

Ch - Ch vanishes on Fin(t), (3.11) can be replaced with

h
Thus as e

h ~
SS Mo SS -‘J(ch, o) - (b, uh Leh o ahieh)
o l

5

3

We rewrite this relation as
eI, = 11", = ﬂueh, e + ﬂ I, v - el + D) .
9] 9]

The calculstion now resembles the stability estimate with the decisive
step being the observation that

SS J(eh, lj)h)eh f o .
§2

Wil Lhis we conelude

h k-1
] )

P, < P 1Y - 971, + o=y

But elliptic theory [7] gives

[Ho=4"11, = o™y + ||, o(1),
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hence
P, 0) = 28, )] = 1, )], = ou*d)

since this is true at t=0. We conclude that

ot ©) = ¥, 0[] = o™,
Hete, €)= g%, 0], = o™y,

Defining the approximate velocity by
uh = - %%P , vh = + -%P (*)s

w2 see that the finite element system (3.11)-(3.12) produces O(hk_l)

approximaetions to the velocities u, v, and a similer order of approxi-

mation to the vorticity ¢ .

»
( )In practice difference quotients of wh are preferable if
uniform meshes are used (see [8]).
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5. Numerical results - In this section we shall report some pre-

liminary and extremely elementary numerical experiments. As mentioned in
the introduction, the calculations based on the M.0.D.E. data will be done
with a three dimensidn quasi-geostrophic model. This work will be done in
conjunction with J. Hirsh and A. R. Robinson, and will be reported else-
where. Here our basic goal will be to confirm the order of accuracy
estimates established in Section U4, and in addition give some simple indi-
cation of how the advection of spikes is approximated by finite elements.

Our first experiment treats o neutral Rossby wave [1T7]
p = -Uy + A sin [k (x - ct + ay)]

in a square region € = [0,L]x[0,L]. For this to be a solution of the

barotropic equation the phase speed c¢ must satisfy

c=U - B/k° (1 + o)

.

Two finite element spaces, namely quadratics and cubics, are con-

sidered along with the first order windward difference scheme [18]. 1In

order Lo keep Lhe mumount, of work roughly constant, we ugsed a uniform mesh
o b= L/ oand 1L/8 0 ror the difterence scheme with h = 1,/2  and
ho= b/ ror Lhe Pinile elements,  'The results are glven in Table [ for

selected points in the region §£. The time integration was done for the

finitec element with the implicit scheme discussed in Section 3. The time

steps T satisfied the Courant condition



(5.1)
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< {n/L)
= U + kA

and one extrapolation was used for the cubics per time step. For

explicit upwind scheme one half of the value of (5.1) was used.

TABLE I

the

Neutral Rossby wave

u=5 = 100, L = 100, kx = .075, B = .00125
Percent error in v = Q&
ox
POTNT (L/4, L/2) (L/2, L/2) | (3L/4, L/2)
Upwind scheme h = 1/k 20% 20% 6%
h=1/8 8% 10% 6%
Quadratics h=1/2 8% 15% 18%
= 1/h 3% L% 5%
Cubics =1/2 3% 3% L%
= 1/4 0.3% 0.4% 1%
Percent error in vorticity
POINT (L/4, L/2) (L/2, L/2) | (3L/4, L/2)
Upwind scheme h = 1/h 15% 37% Lo%
h = 1/8 10% 21% 23%
Quadratics h=1/?2 18% 32% 8%
=1/} 5% 6% 2%
Cubics =1/2 2% 10% 5%
= 1/h 0.1% 2% 0.6%
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The orders of accuracy predicted in Section L4 can in essence be seen
from Table I. The slight variation in the rate is due to the fact that the

theory in Section L was developed for L convergence while Table I refers

2

to pointwise convergence. Observe also that for this simple Rossby wave the
higher order elements (i.e., cubic and quadratic) are strikingly more efficient.
The approximations obtained from linear elements are almost identical to

those listed for the upwind scheme and hence the former was not included.

In our second experiment we consider a stream function of the form
p = -Uy + AT [k (x - Ut)]

with no B-plane effect (i.e., B = 0 and a constant Coriolis parameter.)
The function f 1is chosen so that the vorticity

L=k Af" [k(x - Ut)]

is a spike:

(sin g)3 if 0 < E<1 ,
fll(g) =

0 if elsewhere

We use the same approximations as in the first experiment but with
different, datn,  In partienlar, we wanl. the support of L to he smnll

comprneed Lo b and e wee uiier

giving us the profile shown in figure 5-1. 1In addition we use

A=1,U=5,a=1.
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16

Figure 5-1.-~ Vorticity spike.

'he came Lime integrations as in the first experiment are used with

the time step 1 satisfying
) h
(5.2) Ty

To keep the work roughly the same we used one half of the value of T

h
for the explicit, upwind scheme. The profiles for ch and Vv are

shown o Piparee 0,
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It can be observed from Figure 5~2 that the finite element schemes
have oscillations downstream from the spike while no such phenomena exists
for the upwind difference scheme. This is due to the numerical viscosity

in the latter; i.e., upwind differencing is consistent with the dissapative

operator
(5.0) —-a_.+u_a_+v.._a_c= U Az
ot ox oy
up Lo terms of order O(h2) + QAte» . The numerical viscosity coefficient

is of order 0(h) + 0(At), (see 718]). The "numerical friction" dampens
oscillations, but also quite unfortunately the spike itself!. The "smearing"
effect can be readily seen from the vorticity profiles. |

The finite element schemes (with the time approximation (3.16)), on
the other hand, are conservative in the sense that the numerical viscosity
vis zero. This is easily verified by Taylor expansion, which due to their
length will not be produced here.

In most problems, and in particular the MODE calculations, the oscilla-
tions (Lypienlly with o period of a mesh length) are far less troublesome
thun smewring. First of all, they are of the right order (e.g., O(h2) for
quadratics), and secondly they are easily detected in a given calculation.

This hes interesting implications for the point raised in Section 3
concerning the fundamental role played by implicitness in the finite ele-

ment method. The fact that the inflow region changes significantly in




1

time--us it does even for the simple examples considered in £his Section--
eliminates the really attractive higher order, explicit, and conservative
difference schemes (e.g., the fourth order scheme of Arakawa [18, p. 105]).
If one desires an explicit approximetion some form of "windward" differenc-
ing at the outflow seems inevitable, and the latter is inherently non-
conservative (and inaccurate). In other words, implicitness may be essential
for these types of problems, a fact which asugers well for the future appli-
caetion of the finite elements ideas in this type of setting.

6. Conclusions. A theory is developed which shows that the finite
clement method produces stable and accurate approximetions to flow problems.
While the setting for the latier was the two dimensional stream function-
vorticity formulation, the tools of analysis used are rather general, and
one can be assured that the method appropriately implemented will produce
reliable approximation.

The big issue concerning the use of finite elements centers therefore
on efficiency. As the analysis and exemples in this paper show, implicit-
ness is quite fundementul to the method. Modifications such as "lumping"
which in essence produce explicit approximations can be dangerously un-
sluble in the Navier-UOtokes setting, and therefore must be rejected except
for very special circumstances. The question is whether the implicitness
is really necessary.

For problems with simple geometries (e.g., rectangular polygons)
where uniform grids are sufficient, the answer is clearly negative. A

rather striking example is obtained by compering the explicit Arakawa
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difference scheme with the scheme obtained from cubie finite elements.
The simplicity of the former compared to the latter is considerable.
They both produce third order approximations to the velocities, yet a
very conservative and ad hoc guess would be that the cubics would re-
quire at least one and possibly two orders of magnitude more work and
computer storage.

This does not mean, however, that finite elements will be useless

for rlow problems. Indeed, it is now increasingly clear that suitably

formulated higher order methods -- either finite differences or
ffinite elements -- can be considerably more efficient than first and

second order methods even for complicated” engineering problems (see e.g.
fry, trid, [12]). This is also clearly illustrated in very simple
examples of the previous section. The most striking property of the
finite element method is the ease with which higher order approximations
can be derived even in the presence of irregular grids and irregular
boundaries. This is in striking contrast to explicit higher order
finite difference schemes, and for problems such as the limited region
oeonn model where oither irregular grids or boundaries are essential,

we el Lhe ffinite element  ideas can play a significant role.
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